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Abstract

The theory of conventional constrained molecular dynamics (MD) simulations is reexamined based on a projection

operator approach. A new algorithm, named WIGGLE, is presented for MD simulations with internal constraints. At

each time step, the algorithm utilizes the constrained accelerations derived from velocity adjustments to satisfy the hid-

den constraints, and provides both initial and final constrained values that are almost an order of magnitude closer to

the desired values than does RATTLE. Its performance is compared with those of RATTLE and SHAKE for an octane

molecule. Also presented are a formalism to additionally constrain the angular momentum about the center of mass and

an expression for the local energy drift during each integration time step.
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1. Introduction

Molecular dynamics (MD) simulations are commonly used to deduce conformational changes as well as

physical properties of macromolecules, the atomistic trajectories being determined by numerically integrat-

ing the related Newton equations of motion [1,2]. In order to maintain the system�s stability, the integration
time step routinely has to be kept small enough (less than 1 fs) to resolve such fast motions as vibrations of
internal bond length coordinates. However, during certain simulation time ranges of a molecule, the
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average changes in the internal bond lengths are negligible compared to those in torsion (viz., dihedral) an-

gles directly related to conformational changes. Thus, freezing the fast internal motions is an efficient way

to increase the integration time step. Typically, freezing all bond length coordinates enables one to use a

time step four times larger than that for an unconstrained MD simulation.

Since the introduction of SHAKE [3], in which atomic coordinates are iteratively adjusted to give inter-
nal bond length constraints within a specified tolerance at each time step, analyses and modifications to

constrain internal degrees of freedom have been undertaken [4–26]. Another important algorithm for this

purpose is RATTLE [6], in which atomic velocities are additionally adjusted, based on the velocity Verlet

scheme [27], to satisfy the hidden constraints that are time derivatives of the original constraint equations.

Thus, RATTLE provides more accurate constrained atomic velocities than SHAKE, in which atomic veloc-

ities are implicitly determined by the Verlet algorithm [28].

In SHAKE and RATTLE, the unconstrained accelerations obtained from forces without any constraints

are used to give the initial atomic positions for the next time step. We present a new method, named WIG-
GLE, that uses the constrained accelerations easily derived from the adjusted atomic velocities to satisfy the

hidden constraints, and provides initial constrained values for the next time step that are closer to the de-

sired values than those in SHAKE and RATTLE.

In Section 2, the theory of constrained MD simulations is reinvestigated based on the underlying pro-

jection operator. Derivation of WIGGLE and its implementation are shown in Section 3, and it is applied

to an octane molecule to test its performance compared with RATTLE and SHAKE in Section 4. Finally, a

method of constraining the total angular momentum about the center of mass (Appendix A) and a specific

relation for the local energy drift in a given time step (Appendix B) are presented.
2. A projection operator approach to constrained molecular dynamics

We consider an isolated molecule of p atoms whose positions xk (k = 1, . . . ,p) are subject to Nc con-

straints ra(X) = Ca (constant) (a = 1, . . . ,Nc). In matrix form, the constraint equations are represented by
rðXÞ ¼ C; ð1Þ

where X � ðx11x21x31 . . . x1px2px3pÞ

T
with superscript �T� representing the transpose of a matrix. Then classical

atomic motion is governed by
m€X ¼ �oXðV þ rTKÞ � �oXV c � FX � BT
cK; ð2Þ
where m is a 3p · 3p diagonal matrix containing triads of atomic masses mk, a dot represents differentiation

with respect to time, FX ” �oXV are forces due to the system�s potential energy function V without con-

straints, Vc ” V + rTK with K being the Lagrange undetermined parameters for constraint forces, and

Bc ” oXr. Successive differentiation of (1) with respect to time provides the following hidden constraints:
_r ¼ Bc
_X ¼ 0; ð3Þ

€r ¼ Bc
€Xþ _X

T
B2c

_X ¼ 0 ð4Þ
with B2c � oXBc � o
2
Xr. Using (2) and (4), for given _X and FX the parameters K can be determined by

solving
GccK ¼ Bcm
�1FX þ _X

T
B2c

_X; ð5Þ

where Gcc � Bcm

�1BT
c with the superscript ��1� representing the inverse of a nonsingular matrix. For con-

straints on nonredundant internal coordinates, the symmetric matrix Gcc is also positive definite, giving a
nonsingular solution for K. Substituting this into (2) leads one to
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€X ¼m�1FX �m�1BT
cG

�1
cc ðBcm

�1FX þ _X
T
B2c

_XÞ ½from (5)�
¼m�1FX �m�1BT

cG
�1
cc ðBcm

�1FX � Bc
€XÞ ½from (4)�

¼m�1FX �m�1BT
cG

�1
cc Bcðm�1FX � €XÞ. ð6Þ
Thus, for a nonsingular Gcc, (2) is equivalent to
Q€X ¼ Qm�1FX ð7Þ

with Q � 1�m�1BT

cG
�1
cc Bc. Since Q2 = Q and BcQ = 0, Q is a projection operator from unconstrained

dynamical space to the subspace, viz., the kernel of the linear operator corresponding to Bc, that is orthog-
onal to the space spanned by the constrained degrees of freedom [12].

Now, we consider X1 ” QX and QX1 = Q2X at an arbitrary molecular configuration of ðX; _XÞ with non-

singular Gcc. Since Q2 = Q, we have
0 ¼ ðQ2 �QÞX ¼ X1 � X�m�1BT
cG

�1
cc BcðX1 � XÞ

() X1 ¼ X�m�1BT
cG

�1
cc BcðX� X1Þ. ð8Þ
Since an infinitesimal displacement Dr in internal constraints is nonlinearly related to a Cartesian displace-

ment DX in the neighborhood of X by
Dr ¼ BcDXþ 1
2
DXTB2cDXþ � � � ; ð9Þ
with r1 being constraint values at X1, (8) is expressed by
X1 ¼ X�m�1BT
cG

�1
cc ðr� r1Þ þ 1

2
ðX� X1ÞTm�1BT

cG
�1
cc B2cðX� X1Þ þ � � � ð10Þ
Setting r1 to the internal constraint values C and considering only up to the first order terms of displace-

ments in (10), the desired atomic coordinates satisfying (1) can be iteratively obtained from
Xnew ¼ Xold �m�1BT
c;oldG

�1
cc;oldðrold � CÞ; ð11Þ
where the iteration continues until a desired accuracy is reached for all constraints or to a specified number

of iteration cycles Nitr. Similarly, setting _r1 � Bc
_X1 to _C ¼ 0 with _X1 � Q _X at X, the desired equation to

adjust atomic velocities is found to be
_Xnew ¼ _Xold �m�1BT
c;oldG

�1
cc;old _rold. ð12Þ
In this case, due to the linear relation of Bcð _X� _X1Þ ¼ _r� _r1 from (3), one iteration cycle is enough for

convergence to the desired values. In SHAKE, atomic velocities are not explicitly adjusted to satisfy (3)

with such a process represented by (12) but are implicitly determined by the Verlet algorithm.

Meanwhile, the iterative formula (11) for coordinate adjustments can be derived in another way. Apply-

ing the Newton–Raphson method to (1), viz., considering only the first order displacement terms in (9), the

resulting scheme is found to be
Bc;oldðXnew � XoldÞ ¼ �ðrold � CÞ. ð13Þ
In view of the left-inverse of Bc,old, for the nonredundant constraints with Nc < 3p, there are infinitely many

solutions of (13):
Xnew � Xold ¼ �u�1BT
c;oldðBc;oldu

�1BT
c;oldÞ

�1ðrold � CÞ ð14Þ
with u being an arbitrary nonsingular symmetric matrix [29]. However, the dynamic equations of motion (2)

and (5) fix u to bem, making (14) identical to (11). Our test on an octane molecule shows that the direct appli-

cation of (11) slowly dissipates the system�s kinetic energy, eventually freezing all atomic motions, though it
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provides mathematically correct constrained values. A proper scheme for avoiding this problem, with an

integration time step Dt, has to specifically incorporate coordinates at the preceding time step such as [16,25]
XnewðDtÞ ¼ XoldðDtÞ �m�1BT
c ð0ÞG

�1
cc ð0Þ roldðDtÞ � Cf g. ð15Þ
However, this scheme converges only for ranges in Dt less than a certain limit.

The iteration process of (15) and (12) does not require matrix inversion for G�1
cc but solving linear equa-

tions related to Gcc, e.g. for the scheme of (15)
GccC ¼ r� C. ð16Þ

For a symmetric positive definite matrix Gcc, this can be solved by either a direct matrix method of Chole-

sky decomposition or an iterative (Jacobi, Gauss–Seidel, successive over-relaxation, preconditioned conju-

gate gradient, etc.) method [30,31]. Although the efficiency of the preconditioned conjugate gradient

method is well-known [30], (16) can also be efficiently solved by the truncated series expansion method

around the identity matrix [19]. Following this, with D being the diagonal matrix of its ath elements defined

by da � 1=
ffiffiffiffiffiffiffi
Gaa

cc

p
, the inverse matrix G�1

cc can be approximated by [19]
G�1
cc ¼ DðDGccDÞ�1

D ¼ Dð1� PÞ�1
D ffi D

XNord

n¼0

Pn

 !
D; ð17Þ
where the nonzero elements of the symmetric matrix P are given only for a 6¼ b by
P ab ¼ �daGab
cc d

b. ð18Þ

However, with its accuracy depending on the largest power Nord, the expansion of (17) is valid only when all

eigenvalues of P are smaller than unity in absolute magnitude.

Alternatively, the matrix formulations (15) and (12) can be transformed, respectively, into direct iterative

methods using diagonal elements of Gcc: for the ath constraint
xkk;newðDtÞ ¼ xkk;oldðDtÞ �
1

mk
½Bcð0Þ�akk

ra
oldðDtÞ � Ca

Gaa
cc ð0Þ

ð19Þ

_xkk;new ¼ _xkk;old �
1

mk
½Bc;old�akk

_ra
old

Gaa
cc;old

; ð20Þ
where the iteration converges as long as Gcc is a diagonally dominant matrix. Note that for constraints on

internal coordinates the corresponding diagonal elements of Gcc depend only on constraint values and

atomic masses [32], which, since constant in time, can be computed at the first time step and stored for effi-

cient use in later time steps.
3. Derivation and implementation of WIGGLE

The new constrained MD scheme, WIGGLE, is based on the idea of utilizing the constraint parameters

K(Dt) determined from the velocity adjustments for _XðDtÞ, rather than being put to zero and readjusted for

X(2Dt) as in RATTLE, so as to keep the initial atomic positions for the next time step as close as possible to

the desired constrained molecular geometry. RATTLE [6], which is based on the velocity Verlet scheme,

can be expressed by
XðDtÞ ¼WðDtÞ � Dt2

2
m�1BT

c ð0ÞKð0Þ ð21Þ

_XðDtÞ ¼ _ZðDtÞ � Dt
2
m�1BT

c ðDtÞKðDtÞ; ð22Þ
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with WðDtÞ and _ZðDtÞ being initial positions and velocities defined, respectively, by:
WðDtÞ �Xð0Þ þ Dt _Xð0Þ þ Dt2

2
m�1FX ð0Þ ð23Þ

_ZðDtÞ � _Xð0Þ þ Dt
2

€Xð0Þ þ Dt
2
m�1FX ðDtÞ; ð24Þ
where atomic accelerations €X are subject to (2) at each time step. However, instead of (23), WIGGLE

adopts
WðDtÞ � Xð0Þ þ Dt _Xð0Þ þ Dt2

2
€Xð0Þ; ð25Þ
which is closer to the desired constrained molecular geometry than (23) since (25) uses constrained atomic

accelerations €X rather than the unconstrained ones m�1FX in (23). In this case, the vector of constraint

parameters K(0) in (21), which is to be determined so that the X(Dt) satisfy the given constraint relations

of (1), is different from the one defined in (2) and (5) at X(0). Since (25) itself supports a dynamics in Carte-

sian coordinates, the resulting W(Dt) from accurate _Xð0Þ and €Xð0Þ is already a good approximation to the

atomic positions for the next time step. Any position adjustment from this to X(Dt) during the time step Dt
induces the velocity of {X(Dt) � W(Dt)}/Dt that has to be additionally incorporated into (22). Thus, instead
of (24), the initial WIGGLE velocities are given by
_ZðDtÞ � _Xð0Þ þ 1

Dt
XðDtÞ �WðDtÞf g þ Dt

2
€Xð0Þ þ Dt

2
m�1FX ðDtÞ ¼ _qðDtÞ þ Dt

2
m�1FX ðDtÞ ð26Þ
with _qðDtÞ � fXðDtÞ � Xð0Þg=Dt. Although the accurate €XðDtÞ for W(2Dt) in the next time step is deter-
mined from solving (2) and (5), an effective alternative to this can be obtained from
€XðDtÞ ¼ 2

Dt
_XðDtÞ � _qðDtÞ

� �
; ð27Þ
which is derived from applying (26) to (22) and using (2), with _XðDtÞ being the adjusted atomic velocities

satisfying the hidden constraints.
In the first part of WIGGLE, the parameters K(0) in (21) can be iteratively determined as in RATTLE

and SHAKE so that the resulting X(Dt) satisfy (1) within a specified limit:
Knewð0Þ ¼ Koldð0Þ �
2

Dt2
½Bc;oldðDtÞm�1BT

c ð0Þ�
�1

roldðDtÞ � Cf g. ð28Þ
This is derived from the Taylor expansion of r(X(Dt)) to the terms in Dt2 with respect to W(Dt) [3] and is

equivalent to the iterative position adjustments of
XnewðDtÞ ¼ XoldðDtÞ �m�1BT
c ð0Þ½Bc;oldðDtÞm�1BT

c ð0Þ�
�1

roldðDtÞ � Cf g. ð29Þ

Although (29) provides atomic positions closer to the desired constrained geometry than does (15), it re-
quires computing Bc at each iteration cycle and also dealing with the nonsymmetric matrix

Bc;oldðDtÞm�1BT
c ð0Þ [16,25]. The worst possibility is that the diagonal elements of Bc;oldðDtÞm�1BT

c ð0Þ may

take zero values, thus, giving a singularity in (29), while those of the symmetric Gcc are positive definite

for constraints on nonredundant internal coordinates. Specifically, for the ath distance type constraint of
raðXÞ ¼ ðxm � xlÞ2 � x2
lm � r2lm ¼ Ca; ð30Þ
½Bc;oldðDtÞm�1BT
c ð0Þ�

aa
is zero when xlm, old(Dt) Æ xlm(0) = 0, while Gaa

cc ¼ 4Cað1=ml þ 1=mmÞ is nonzero con-
stant in time. Although a modified scheme based on the nonlinear Newton iteration has been introduced

to avoid this kind of singularity [23], the iterative method of (19) is an efficient alternative. In order to adjust

positions for the ath constraints, it allows us to use the following singularity free expressions:
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xl;newðDtÞ ¼xl;oldðDtÞ þ
1

ml

xlmð0Þ r2lm;oldðDtÞ � Ca
n o

2Cað1=ml þ 1=mmÞ
ð31Þ

xm;newðDtÞ ¼xm;oldðDtÞ �
1

mm

xlmð0Þ r2lm;oldðDtÞ � Ca
n o

2Cað1=ml þ 1=mmÞ
. ð32Þ
Thus, the expression of xlm,old(Dt) Æ xlm(0) in the corresponding equations in the early SHAKE [3] and RAT-

TLE [6] can be efficiently replaced by Ca. For constraints only on distances such as (30), the cross terms of

Gcc, given by Gab
cc ¼ 4xml � xmk=mm for a 6¼ b, are nonzero only for constraints adjacent to each other with mm

being the mass of the shared atom.

In the second part of WIGGLE, K(Dt) in (22) is adjusted from zero so that atomic velocities _XðDtÞ at the
adjusted atomic positions satisfy the hidden constraints with the initial velocities given by (26). This can also

be used for a RATTLE scheme since the same expression is derivable from substituting (24) into (22). Note

that, in the RATTLE process with _ZðDtÞ defined by (24), any changes of K(0) in (21) for the adjustment of

X(Dt) induce changes in _ZðDtÞ. However, using (26), we can avoid such subsequent adjusting of the initial

atomic velocities from _Xð0Þ þ Dtm�1FX ð0Þ=2 at each position adjustment for X(Dt) in the conventional

RATTLE [6] process. Due to the linearity of (3), the velocity adjustment can be accomplished in an iteration

cycle. Applying Bc(Dt) to the right-hand side of (22) and imposing _rðDtÞ ¼ 0, the desired K(Dt) is found to be
KðDtÞ ¼ 2

Dt
½GccðDtÞ��1

BcðDtÞ _ZðDtÞ. ð33Þ
Substituting this into (22), the constrained velocities are found to be
_XðDtÞ ¼ _ZðDtÞ �m�1BT
c ðDtÞ½GccðDtÞ��1

BcðDtÞ _ZðDtÞ ¼ QðDtÞ _ZðDtÞ; ð34Þ

whereQ is the projection matrix defined in (7). Successive application ofQ to the previously adjusted veloc-

ities corresponds to the matrix iteration of (12). In the case of imposing only distance type constraints of

(30), the iterative scheme of (20) leads to
_xl;newðDtÞ ¼ _xl;oldðDtÞ þ
1

ml

xlmðDtÞ _xlm;oldðDtÞ � xlmðDtÞ
� �

Cað1=ml þ 1=mmÞ
ð35Þ

_xm;newðDtÞ ¼ _xm;oldðDtÞ �
1

mm

xlmðDtÞ _xlm;oldðDtÞ � xlmðDtÞ
� �

Cað1=ml þ 1=mmÞ
. ð36Þ
An explicit WIGGLE scheme consists of the following:

(i) Routine for the first time step:
(a) Given X0, _X0; compute FX0 ” �oX0
V.

(b) Set _Z0 ¼ _X0 and adjust _X0 in (22) to satisfy (3), if necessary.

(c) Solve (5) and (2) for €X0.
(d) Set W1 ¼ X0 þ Dtð _X0 þ Dt€X0=2Þ.
(e) Adjust X1 in (21) from W1 to satisfy (1).

(f) Set _q1 ¼ ðX1 � X0Þ=Dt.
(ii) Routine for the (k + 1)th time step (k > 0):
(a) Compute FXk � �oXk V .
(b) Set _Zk ¼ _qk þ Dtm�1FXkðDtÞ=2.
(c) Adjust _Xk in (22) from _Zk to satisfy (3).
(d) Set Wkþ1 ¼ Xk þ Dtð2 _Xk � _qkÞ.
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(e) Adjust Xk + 1 in (21) from Wk+1 to satisfy (1).

(f) Set _qkþ1 ¼ ðXkþ1 � XkÞ=Dt.
(g) Go to (a) with k = k + 1.
The above (c) and (d) procedures in the first time step canbe simplified byW1 ¼ X0 þ Dtð _X0 þ Dtm�1FX0=2Þ, as
in the RATTLE scheme, which avoids both computing B2c and solving (5).
4. Application to octane

Some simulation results on an isolated octane molecule are listed in Table 1. Computations were done on

a single node (512 MB of memory and 1.2 GHz processing speed) of a LINUX cluster, using the SDFF
1

s from constrained dynamics for an isolated octane molecule

Nitr; Nord
b E (kcal/mol) Temperature (K) di

c (Å) df
c (Å) CPU (s)

1 45.34 ± 0.12 296.0 ± 38.8 6.97 · 10�4 9.89 · 10�6 395.08

2 45.31 ± 0.12 295.5 ± 39.2 6.80 · 10�4 8.68 · 10�8 395.55

3 45.31 ± 0.12 295.5 ± 39.2 6.80 · 10�4 5.59 · 10�10 395.95

1 45.34 ± 0.12 295.7 ± 37.9 6.80 · 10�4 2.35 · 10�6 402.30

2 45.31 ± 0.12 295.5 ± 39.2 6.80 · 10�4 1.17 · 10�8 403.05

3 45.31 ± 0.12 295.5 ± 39.2 6.80 · 10�4 7.11 · 10�11 404.57

1 45.34 ± 0.12 295.8 ± 38.3 6.83 · 10�4 2.68 · 10�6 396.28

2 45.31 ± 0.12 295.5 ± 39.2 6.80 · 10�4 8.22 · 10�8 396.73

3 45.31 ± 0.12 295.5 ± 39.2 6.80 · 10�4 3.03 · 10�9 397.11

1; 2 45.35 ± 0.12 295.8 ± 38.4 6.82 · 10�4 2.71 · 10�6 395.43

1; 4 45.34 ± 0.12 295.7 ± 37.9 6.80 · 10�4 2.35 · 10�6 395.55

1; 6 45.34 ± 0.12 295.7 ± 37.9 6.80 · 10�4 2.35 · 10�6 395.67

2; 2 45.31 ± 0.12 295.5 ± 39.2 6.79 · 10�4 1.55 · 10�8 395.72

2; 4 45.31 ± 0.12 295.5 ± 39.2 6.80 · 10�4 1.17 · 10�8 395.85

2; 6 45.31 ± 0.12 295.5 ± 39.2 6.80 · 10�4 1.17 · 10�8 395.96

3; 2 45.31 ± 0.12 295.5 ± 39.2 6.79 · 10�4 1.05 · 10�10 396.14

3; 4 45.31 ± 0.12 295.5 ± 39.2 6.80 · 10�4 7.11 · 10�11 396.28

3; 6 45.31 ± 0.12 295.5 ± 39.2 6.80 · 10�4 7.11 · 10�11 396.39

1 45.27 ± 0.12 293.5 ± 38.9 5.18 · 10�3 8.02 · 10�5 395.36

2 45.31 ± 0.12 295.5 ± 38.1 5.12 · 10�3 5.78 · 10�7 395.81

3 45.31 ± 0.12 295.6 ± 39.2 5.10 · 10�3 3.54 · 10�9 396.32

1; 4 45.19 ± 0.13 294.0 ± 38.0 5.02 · 10�3 1.61 · 10�5 395.44

2; 4 45.31 ± 0.12 295.5 ± 39.2 5.04 · 10�3 7.52 · 10�8 395.76

3; 4 45.31 ± 0.12 295.5 ± 39.2 5.04 · 10�3 4.54 · 10�10 396.19

1 45.57 ± 0.13 298.0 ± 40.2 1.03 · 10�2 1.62 · 10�4 394.64

2 45.63 ± 0.11 293.7 ± 39.4 1.02 · 10�2 1.12 · 10�6 395.10

3 45.63 ± 0.11 296.3 ± 39.7 1.01 · 10�2 6.79 · 10�9 395.43

1; 4 45.37 ± 0.17 295.1 ± 38.9 1.00 · 10�2 3.15 · 10�5 394.86

2; 4 45.62 ± 0.11 295.7 ± 37.9 1.01 · 10�2 1.41 · 10�7 395.38

3; 4 45.63 ± 0.11 294.9 ± 38.4 9.99 · 10�3 7.38 · 10�10 395.82

WIGGLE; R, RATTLE; S, SHAKE; DI, direct iteration; CG, conjugate gradient; SE, series expansion.

r, number of iteration cycles; Nord, number of the highest power in SE method.

nd df = average initial and final deviation, respectively, from the desired constrained length (1.08 Å) of each C–H bond.
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force field for hydrocarbon chains optimized to reproduce ab initio structures, energies, and vibrational fre-

quencies [33]. Only the C–H bonds were constrained (to 1.08 Å), since some C–C stretching frequencies are

within the range of some angle bending frequencies. Instead of the constraint equations of (30), the actual

bond distance constraints of
ffiffiffiffiffiffi
x2
lm

q
¼ rlm ¼ Ca were used. The system�s temperature was slowly increased

from zero to room temperature by scaling atomic velocities to give a temperature change of 5 K at each

200 time steps if the average temperature was outside a specified range from the desired temperature, result-

ing in atomic velocities corresponding to an average temperature of 301.2 K. Unless the initial linear and

angular momenta are zero, such scaling in Cartesian velocities usually introduces artificial changes in trans-
lational and rotational energy [34,35]. From this velocity set, we removed the angular momentum about the

center of mass by using the method presented in Appendix A, obtaining the initial atomic velocity set to be

applied to the octane molecule. Data shown in Table 1 are averaged over 5000 steps starting from the sec-

ond step with Dt = 2 fs, except for CPU times which are measured for 100,000 steps. The CPU time for a

given computation routine depends on the computer, compiler, and options. Our calculations also showed

an inherent fluctuation of about 1 s during the repeated simulations, and the CPU times are averaged from

five different runs.

The first part of Table 1 is for the WIGGLE (W) process for different methods of solving the related
linear equations: direct iteration (DI) based on (19) and (20), Cholesky decomposition (CD) with (15)

and (16), conjugate gradient (CG) method, and the series expansion (SE) method of (17). Specifically,

the CG method we used was preconditioned by diagonal elements of Gcc with a tolerance of 10�7 for

the weighted square of the residual [30]. However, there were no convergence criteria imposed in other

methods except for Nitr or Nord. We observed that W-DI and W-SE perform almost equally and they

are slightly more efficient than W-CD and W-CG. However, both the DI and SE methods were found

to be nonconvergent for constraining all nonredundant bond angles in addition to all bond lengths. In

the WIGGLE simulations, the rms fluctuations in the angular momentum about the center of mass were
found to be less than 10�12 in the 5000 steps.

The second and third parts of Table 1 are for RATTLE (R) and SHAKE (S), respectively. In the RAT-

TLE process, we have simplified the procedure, based on (26). The average initial deviation di from the de-

sired constrained bond length is almost an order of magnitude smaller in WIGGLE for a given Nitr or Nord

than in RATTLE. A similar trend is also observed in the average final deviation df from the constrained

values. The CPU times spent in the SHAKE processes, which skip the velocity adjustments for the hidden

constraints, is smaller than those of RATTLE and WIGGLE. However, differences in the computational

cost among WIGGLE, RATTLE, and SHAKE for a single octane molecule are negligible compared to
the dominant CPU time of 394.57 s spent on calculating energies and forces only, which is almost the same

as that of S-DI with Nitr = 1.
5. Concluding remarks

The proposed constrained MD scheme, WIGGLE, provides both initial and final constrained values that

are an order of magnitude closer to the desired values than those in RATTLE. This is because, in determin-
ing the initial new atomic positions for the next time step, WIGGLE utilizes the constrained accelerations

derived from velocity adjustments to satisfy the hidden constraints, while RATTLE and SHAKE use the

unconstrained accelerations from forces without any constraints. Since the SHAKE scheme involves no

adjustments of atomic velocities required in WIGGLE and RATTLE, it uses less CPU time than WIGGLE

and RATTLE. However, the differences in pure algorithmic efficiency among WIGGLE, RATTLE, and

SHAKE are negligible compared to the dominant computational cost in calculating energies and forces.

As in the case for SHAKE and RATTLE, WIGGLE also conserves the system�s angular momentum if

the potential energy and constraint equations are invariant under external rotations [36].
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Appendix A. Constraining angular momentum

It is useful to investigate an efficient method to remove a system�s angular momentum L about the center

of mass Rcm from a given set of atomic velocities or to carry out complete dynamic processes that keep L

constant at an initial value CL. We present an efficient method to accomplish this, different from the pre-

vious approaches [10,37] that are based on the Eckart condition. With yk ” xk � Rcm, the constraint equa-

tions to be dealt with can be expressed by
LðX; _XÞ ¼
Xp
k¼1

mkyk � _xk ¼ CL. ða1Þ
In order to derive equations of motion that contain atomic accelerations under the constraints of (a1), one

requires only the first derivative of (a1) with respect to time [38]
_LðX; _XÞ ¼ ½o _XL�€X ¼
Xp
k¼1

mkyk � €xk ¼ 0; ða2Þ
since ½oXL� _X ¼ 0. In the case of the additional internal constraints of (1), the resulting equations of motion

have the same form as (2) with [9,22]
Bc �
oXr

o _XL

� �
ða3Þ

GccK � Bcm
�1FX þ

_X
T½o2Xr� _X
½oXL� _X

 !
¼ Bcm

�1FX þ
_X
T½o2Xr� _X

0

 !
. ða4Þ
With I ijcm being elements of the inertia tensor about the center of mass, the corresponding new terms in

Gcc � Bcm
�1BT

c are found to be:
Gij
cc ¼

Xp
k¼1

mkðy2kd
ij � yiky

j
kÞ ¼ I ijcm; ða5Þ

Gia
cc ¼ ðo _XL

iÞm�1ðoXraÞT ¼
Xp
k¼1

ðyk � oxkr
aÞi ¼ 0. ða6Þ
This results from the orthogonality of internal constraints to external rotations [39].
Therefore, instead of (12), the desired atomic velocities can be adjusted from a given set of initial values

by using
_Xnew ¼ _Xold �m�1BT
c;oldG

�1
cc;old

_r

L� CL

� �
; ða7Þ
since ½o _XL� _X ¼ L. Since internal constraints are orthogonal to the external rotations, the process for veloc-

ity adjustments can be separated between internal and external constraints. Thus, either before or after

adjusting velocities only for internal constraints with (12), the process for angular momentum constraints

can be carried out for all atomic velocities by
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_xk;new ¼ _xk;old þ yk � S; ða8Þ

with S being the solution vector of IcmS = L � CL. An equivalent equation to (a8) can also be found else-

where [40]. Because the angular momentum constraints are to be used in the adjustments of atomic veloc-

ities, they should be excluded from the process of adjusting atomic positions.
Appendix B. Energy drift

The stability of a numerical algorithm is closely related to its capability of long time simulations for a
dynamical system. For a general constrained Cartesian integration scheme, it is therefore of interest to com-

pute even an approximate change in the system�s total energy during an integration time step and to deter-

mine the factors affecting the system�s stability. This is because a local energy drift in each time step will

eventually affect the global stability depending on whether the local error is cumulative or not for many

integration steps.

As a general numerical integration scheme for (2), we consider
XðDtÞ ¼Xð0Þ þ Dta _Xð0Þ þ Dt2 b€Xð0Þ þ c€XðDtÞ
� �

ðb1Þ
_XðDtÞ ¼ _Xð0Þ þ Dt e€Xð0Þ þ x€XðDtÞ

� �
; ðb2Þ
where a, b, c, e, and x are appropriate constants, and variables X(0), _Xð0Þ, and €Xð0Þ are assumed to

satisfy (2)–(5) with suitable constraint force parameters K(0). The WIGGLE scheme presented in

Section 3 can also be modified for an arbitrary set of a, b, c, e, and x. With the kinetic energy T being given

by
T ¼ 1
2
_X
T
m _X; ðb3Þ
the system�s total energy, E ” T + Vc, at X(Dt) can be Taylor expanded with respect to X(0) by
EðDtÞ ¼ Eð0Þ þ DtEð1Þð0Þ þ Dt2

2
Eð2Þð0Þ þ Dt3

6
Eð3Þð0Þ þ � � � ðb4Þ
In view of (b1), since €XðDtÞ is expanded as
€XðDtÞ ¼ €Xð0Þ þ Dta½ð _XT
oXÞ€X�ð0Þ þ � � � ðb5Þ
the coefficients E(1) and E(2) are found to be, respectively
Eð1Þ ¼a _X
T

aoXV c þ ðeþ xÞm€X
� �

¼ ða� e� xÞ _XT
oXV c ðb6Þ

Eð2Þ ¼ 2ðbþ cÞ � ðeþ xÞ2
n o

€X
T
oXV c þ aða� 2xÞ _XT½o2XV c� _X; ðb7Þ
where the constrained equations of motion (2) are used. These contributions will be zero if a = e + x = 2x
and 2(b + c) = a2, and (b4) is then found to be
EðDtÞ ¼ Eð0Þ þ Dt3

12
3að4cþ a2Þ€XT½o2XV c� _X� a3 _X

T½ð _XT
oXÞðo2XV cÞ� _X

n o
ð0Þ þ � � � ðb8Þ
The Dt3 term in (b8) represents the smallest energy drift during an integration time step for the dynamical

scheme of (b1) and (b2), including the velocity Verlet scheme [27] (a = 1, b = e = x = 1/2, c = 0). If the con-
straint forces are too inaccurate to hold for (2), then the first order term of (b6) may destroy the system�s
stability.
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[24] V. Kräutler, W.F. van Gunsteren, P.H. Hünenberger, A fast SHAKE algorithm to solve distance constraint equations for small

molecules in molecular dynamics simulations, J. Comput. Chem. 22 (2001) 501.

[25] N. Neto, A new approach to constrained molecular dynamics, J. Mol. Struct. 563–564 (2001) 135.

[26] H.W. Horn, W.C. Swope, J.W. Pitera, J.D. Madura, T.J. Dick, G.L. Hura, T. Head-Gordon, Development of an improved four-

site water model for biomolecular simulations: TIP4P-Ew, J. Chem. Phys. 120 (2004) 9665.

[27] W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, A computer simulation method for the calculation of equilibrium

constants for the formation of physical clusters of molecules: application to small water clusters, J. Chem. Phys. 76 (1982) 637.

[28] L. Verlet, Computer ‘‘experiments’’ on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159

(1967) 98.

[29] W.D. Allen, A.G. Császár, On the ab initio determination of higher-order force constants at nonstationary reference geometries,

J. Chem. Phys. 98 (1993) 2983.

[30] O. Axelsson, Iterative Solution Methods, Cambridge University Press, Cambridge, 1994.

[31] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM, Philadelphia, 1997.

[32] E.B. Wilson Jr., J.C. Decius, P.C. Cross, Molecular Vibrations, McGraw-Hill, New York, 1955.

[33] K. Palmo, N.G. Mirkin, S. Krimm, Spectroscopically determined force fields for macromolecules: 2. Saturated hydrocarbon

chains, J. Phys. Chem. A 102 (1998) 6448.



182 S.-H. Lee et al. / Journal of Computational Physics 210 (2005) 171–182
[34] S.C. Harvey, R.K.-Z. Tan, T.E. Cheatham III, The flying ice cube: velocity rescaling in molecular dynamics leads to violation of

energy equipartition, J. Comput. Chem. 19 (1998) 726.

[35] S.W. Chiu, M. Clark, S. Subramaniam, E. Jakobsson, Collective motion artifacts arising in long-duration molecular dynamics

simulations, J. Comput. Chem. 21 (2000) 121.

[36] M.-Q. Zhang, R.D. Skeel, Symplectic integrators and the conservation of angular momentum, J. Comput. Chem. 16 (1995) 365.

[37] A. Amadei, G. Chillemi, M.A. Ceruso, A. Grottesi, A. Di Nola, Molecular dynamics simulations with constrained roto-

translational motions: theoretical basis and statistical mechanical consistency, J. Chem. Phys. 112 (2000) 9.

[38] H. Rund, The Hamilton–Jacobi Theory in the Calculus of Variations, Robert E. Krieger, New York, 1973.

[39] S.-H. Lee, K. Palmo, S. Krimm, The Casimir–Eckart condition and the transformation of dipole moment derivatives revisited, J.

Mol. Struct. (Theochem.) 546 (2001) 217.

[40] Y. Zhou, M. Cook, M. Karplus, Protein motions at zero-total angular momentum: the importance of long-range correlations,

Biophys. J. 79 (2000) 2902.


	WIGGLE: A new constrained molecular dynamics algorithm in Cartesian coordinates
	Introduction
	A projection operator approach to constrained molecular dynamics
	Derivation and implementation of WIGGLE
	Application to octane
	Concluding remarks
	Acknowledgments
	Constraining angular momentum
	Energy drift
	References


